15 research outputs found

    History dependence, memory and metastability in electron glasses

    Full text link
    We discuss the history dependence and memory effects which are observed in the out-of-equilibrium conductivity of electron glasses. The experiments can be understood by assuming that the local density of states retains a memory of the sample history. We provide analytical arguments for the consistency of this assumption, and discuss the saturation of the memory effect with increasing gate voltage change. This picture is bolstered by numerical simulations at zero temperature, which moreover demonstrate the incompressibility of the Coulomb glass on short timescales.Comment: 4 pages, 1 figur

    Non Equilibrium Noise as a Probe of the Kondo Effect in Mesoscopic Wires

    Full text link
    We study the non-equilibrium noise in mesoscopic diffusive wires hosting magnetic impurities. We find that the shot-noise to current ratio develops a peak at intermediate source-drain biases of the order of the Kondo temperature. The enhanced impurity contribution at intermediate biases is also manifested in the effective distribution. The predicted peak represents increased inelastic scattering rate at the non-equilibrium Kondo crossover.Comment: 4+ pages, 4 figures, published versio

    Conserving many body approach to the fully screened, infinite U Anderson model

    Full text link
    Using a Luttinger Ward scheme for interacting gauge particles, we present a conserving many body treatment of a family of fully screened infinite U Anderson models that has a smooth cross-over into the Fermi liquid state, with a finite scattering phase shift at zero temperature and a Wilson ratio greater than one. We illustrate our method, computing the temperature dependence of the thermodynamics, resistivity and electron dephasing rate and discuss its future application to non-equilibrium quantum dots and quantum critical mixed valent systems

    Coulomb blockade and Non-Fermi-liquid behavior in quantum dots

    Full text link
    The non-Fermi-liquid properties of an ultrasmall quantum dot coupled to a lead and to a quantum box are investigated. Tuning the ratio of the tunneling amplitudes to the lead and box, we find a line of two-channel Kondo fixed points for arbitrary Coulomb repulsion on the dot, governing the transition between two distinct Fermi-liquid regimes. The Fermi liquids are characterized by different values of the conductance. For an asymmetric dot, spin and charge degrees of freedom are entangled: a continuous transition from a spin to a charge two-channel Kondo effect evolves. The crossover temperature to the two-channel Kondo effect is greatly enhanced away from the local-moment regime, making this exotic effect accessible in realistic quantum-dot devices.Comment: 5 figure

    The Memory Effect in Electron Glasses

    Full text link
    We present a theory for the memory effect in electron glasses. In fast gate voltage sweeps it is manifested as a dip in the conductivity around the equilibration gate voltage. We show that this feature, also known as anomalous field effect, arises from the long-time persistence of correlations in the electronic configuration. We argue that the gate voltage at which the memory dip saturates is related to an instability caused by the injection of a critical number of excess carriers. This saturation threshold naturally increases with temperature. On the other hand, we argue that the gate voltage beyond which memory is erased, is temperature independent. Using standard percolation arguments, we calculate the anomalous field effect as a function of gate voltage, temperature, carrier density and disorder. Our results are consistent with experiments, and in particular, they reproduce the observed scaling of the width of the memory dip with various parameters.Comment: Accepted version, to be published in PR

    Enhancement of the Two-channel Kondo Effect in Single-Electron boxes

    Full text link
    The charging of a quantum box, coupled to a lead by tunneling through a single resonant level, is studied near the degeneracy points of the Coulomb blockade. Combining Wilson's numerical renormalization-group method with perturbative scaling approaches, the corresponding low-energy Hamiltonian is solved for arbitrary temperatures, gate voltages, tunneling rates, and energies of the impurity level. Similar to the case of a weak tunnel barrier, the shape of the charge step is governed at low temperatures by the non-Fermi-liquid fixed point of the two-channel Kondo effect. However, the associated Kondo temperature TK is strongly modified. Most notably, TK is proportional to the width of the level if the transmission through the impurity is close to unity at the Fermi energy, and is no longer exponentially small in one over the tunneling matrix element. Focusing on a particle-hole symmetric level, the two-channel Kondo effect is found to be robust against the inclusion of an on-site repulsion on the level. For a large on-site repulsion and a large asymmetry in the tunneling rates to box and to the lead, there is a sequence of Kondo effects: first the local magnetic moment that forms on the level undergoes single-channel screening, followed by two-channel overscreening of the charge fluctuations inside the box.Comment: 21 pages, 19 figure

    Fermi liquid identities for the Infinite U Anderson Model

    Full text link
    We show how the electron gas methods of Luttinger, Ward and Nozi\`eres can be applied to the infinite U Anderson impurity model within a Schwinger boson treatment. Working to all orders in a 1/N expansion, we show how the Friedel Langreth relationship, the Yamada-Yosida-Yoshimori and the Shiba-Korringa relations can be derived, under the assumption that the spinon and holon fields are gapped. One of the remarkable features of this treatment, is that the Landau amplitudes depend on the exchange of low energy virtual spinons and holons. We end the paper with a discussion on the extension of our approach to the lattice, where the spinon-holon is expected to close at a quantum critical point.Comment: 18 pages. Version 2 revised after referees comment

    Kondo effect in coupled quantum dots: a Non-crossing approximation study

    Full text link
    The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in slave-boson language, is solved by means of a generalization of the non-crossing approximation (NCA) to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predictions that can be observed experimentally in linear and nonlinear transport measurements through coupled quantum dots. Importantly, it is demonstrated that measurements of the differential conductance G=dI/dV{\cal G}=dI/dV, for the appropriate values of voltages and inter-dot tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected in the linear transport through the system: the curve linear conductance vs temperature is non-monotonic, with a maximum at a temperature TT^* characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
    corecore